skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, H. L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract EarthScope's USArray Transportable Array has shortcomings for the purpose of interpreting geologic features of wavelengths less than the Transportable Array station spacing, but these can be overcome by using higher spatial resolution gravity data. In this study, we exploit USArray receiver functions to reduce nonuniqueness in the interpretation of gravity anomalies. We model gravity anomalies from previously derived density variations of sedimentary basins, crustalVp/Vsvariation, Moho variation, and upper mantle density variation derived from body wave imaging informed by surface wave tomography to estimateVp/Vs. Although average densities and density contrasts for these seismic variations can be derived, the gravity anomalies modeled from them do not explain the entire observed gravity anomaly field in the United States. We use the unmodeled gravity anomalies (residuals) to reconstruct local variations in densities of the crust associated with geologic sources. The approach uses velocity‐density relationships and differs from density computations that assume isostatic compensation. These intracrustal densities identify geologic sources not sampled by and, in some cases, aliased by the USArray station spacing. We show an example of this improvement in the vicinity of the Bloomfield Pluton, north of the bootheel of Missouri, in the central United States. 
    more » « less